19 resultados para Epidermal growth factor receptor

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Treatment of murine Swiss 3T3 fibroblasts and XB/2 keratinocytes with UV-B light (302 nm) resulted in a dose-dependent inhibition of [125I] epidermal growth factor (EGF) binding. The light dose required to achieve 50% inhibition of binding in both cell types was 80–85 J/m2 Decreased [125I] platelet-derived growth factor binding was not evoked even by light doses of up to 280 J/m2 UV-B irradiation did not stimultate phosphorylation of the 80 kd protein substrate for protein kinase C. Furthermore, its effect on [125I]EGF binding was not altered as a consequence of protein kinase C down-regulation following prolonged exposure of cells to phorbol esters. These results indicate that UV-B-induced transmodulation of the epidermal growth factor receptor is a specific event mediated through a protein kinase C-indepen dent pathway. Transfer of culture medium from irradiated cells to untreated control cells showed this effect was not induced as a result of transforming growth factor α release and subsequent binding to the EGF receptor in these cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Trophoblast invasion is a temporally and spatially regulated scheme of events that can dictate pregnancy outcome. Evidence suggests that the potent mitogen epidermal growth factor (EGF) regulates cytotrophoblast (CTB) differentiation and invasion during early pregnancy. METHODS AND RESULTS: In the present study, the first trimester extravillous CTB cell line SGHPL-4 was used to investigate the signalling pathways involved in the motile component of EGF-mediated CTB migration/invasion. EGF induced the phosphorylation of the phosphatidylinositol 3-kinase (PI3-K)-dependent proteins, Akt and GSK-3β as well as both p42/44 MAPK and p38 mitogen-activated protein kinases (MAPK). EGF-stimulated motility was significantly reduced following the inhibition of PI3-K (P < 0.001), Akt (P < 0.01) and both p42/44 MAPK (P < 0.001) and p38 MAPKs (P < 0.001) but not the inhibition of GSK-3β. Further analysis indicated that the p38 MAPK inhibitor SB 203580 inhibited EGF-stimulated phosphorylation of Akt on serine 473, which may be responsible for the effect SB 203580 has on CTB motility. Although Akt activation leads to GSK-3β phosphorylation and the subsequent expression of β-catenin, activation of this pathway by 1-azakenpaullone was insufficient to stimulate the motile phenotype. CONCLUSION: We demonstrate a role for PI3-K, p42/44 MAPK and p38 MAPK in the stimulation of CTB cell motility by EGF, however activation of β-catenin alone was insufficient to stimulate cell motility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rationale: Platelets are anuclear cell fragments derived from bone marrow megakaryocytes (MKs) that safeguard vascular integrity but may also cause pathological vessel occlusion. One major pathway of platelet activation is triggered by 2 receptors that signal through an (hem)immunoreceptor tyrosine-based activation motif (ITAM), the activating collagen receptor glycoprotein (GP) VI and the C-type lectin-like receptor 2 (CLEC-2). Growth factor receptor–bound protein 2 (Grb2) is a ubiquitously expressed adapter molecule involved in signaling processes of numerous receptors in different cell types, but its function in platelets and MKs is unknown. Objective: We tested the hypothesis that Grb2 is a crucial adapter protein in (hem)immunoreceptor tyrosine-based activation motif signaling in platelets. Methods and Results: Here, we show that genetic ablation of Grb2 in MKs and platelets did not interfere with MK differentiation or platelet production. However, Grb2-deficiency severely impaired glycoprotein VI–mediated platelet activation because of defective stabilization of the linker of activated T-cell (LAT) signalosome and activation of downstream signaling proteins that resulted in reduced adhesion, aggregation, and coagulant activity on collagen in vitro. Similarly, CLEC-2–mediated signaling was impaired in Grb2-deficient platelets, whereas the cells responded normally to stimulation of G protein–coupled receptors. In vivo, this selective (hem)immunoreceptor tyrosine-based activation motif signaling defect resulted in prolonged bleeding times but affected arterial thrombus formation only after concomitant treatment with acetylsalicylic acid, indicating that defective glycoprotein VI signaling in the absence of Grb2 can be compensated through thromboxane A2–induced G protein–coupled receptor signaling pathways. Conclusions: These results reveal an important contribution of Grb2 in (hem)immunoreceptor tyrosine-based activation motif signaling in platelets in hemostasis and thrombosis by stabilizing the LAT signalosome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective was to investigate the potential role of the oocyte in modulating proliferation and basal, FSH-induced and insulin-like growth factor (IGF)-induced secretion of inhibin A (inh A), activin A (act A), follistatin (FS), estradiol (E-2), and progesterone (P-4) by mural bovine granulosa cells. Cells from 4- to 6-mm follicles were cultured in serum-free medium containing insulin and androstenedione, and the effects of ovine FSH and IGF analogue (LR3-IGF-1) were tested alone and in the presence of denuded bovine oocytes (2, 8, or 20 per well). Medium was changed every 48 h, cultures were terminated after 144 h, and viable cell number was determined. Results are based on combined data from four independent cultures and are presented for the last time period only when responses were maximal. Both FSH and IGF increased (P < 0.001) secretion of inh A, act A, FS, E-2, and P-4 and raised cell number. In the absence of FSH or IGF, coculture with oocytes had no effect on any of the measured hormones, although cell number was increased up to 1.8-fold (P < 0.0001). Addition of oocytes to FSH-stimulated cells dose-dependently suppressed (P < 0.0001) inh A (6-fold maximum suppression), act A (5.5-fold), FS (3.6-fold), E-2 (4.6-fold), and P-4 (2.4-fold), with suppression increasing with FSH dose. Likewise, oocytes suppressed (P < 0.001) IGF-induced secretion of inh A, act A, FS, and E-2 (P < 0.05) but enhanced IGF-induced P-4 secretion (1.7-fold; P < 0.05). Given the similarity of these oocyte-mediated actions to those we observed previously following epidermal growth factor (EGF) treatment, we used immunocytochemistry to determine whether bovine oocytes express EGF or transforming growth factor (TGF) alpha. Intense staining with TGFalpha antibody (but not with EGF antibody) was detected in oocytes both before and after coculture. Experiments involving addition of TGFalpha to granulosa cells confirmed that the peptide mimicked the effects of oocytes on cell proliferation and on FSH- and IGF-induced hormone secretion. These experiments indicate that bovine oocytes secrete a factor(s) capable of modulating granulosa cell proliferation and responsiveness to FSH and IGF in terms of steroidogenesis and production of inhibin-related peptides, bovine oocytes express TGFalpha but not EGF, and TGFalpha is a prime candidate for mediating the actions of oocytes on bovine granulosa cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TGR5 is a G protein-coupled receptor that mediates bile acid (BA) effects on energy balance, inflammation, digestion and sensation. The mechanisms and spatiotemporal control of TGR5 signaling are poorly understood. We investigated TGR5 signaling and trafficking in transfected HEK293 cells and colonocytes (NCM460) that endogenously express TGR5. BAs (deoxycholic acid, DCA, taurolithocholic acid, TLCA) and the selective agonists oleanolic acid (OA) and 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N, 5-dimethylisoxazole-4-carboxamide (CCDC) stimulated cAMP formation but did not induce TGR5 endocytosis or recruitment of β-arrestins, assessed by confocal microscopy. DCA, TLCA and OA did not stimulate TGR5 association with β-arrestin 1/2 or G protein-coupled receptor kinase (GRK) 2/5/6, determined by bioluminescence resonance energy transfer. CCDC stimulated a low level of TGR5 interaction with β-arrestin2 and GRK2. DCA induced cAMP formation at the plasma membrane and cytosol, determined using exchange factor directly regulated by cAMP (Epac2)-based reporters, but cAMP signals did not desensitize. AG1478, an inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase, the metalloprotease inhibitor batimastat, and methyl-β-cyclodextrin and filipin, which block lipid raft formation, prevented DCA stimulation of extracellular signal regulated kinase (ERK1/2). BRET analysis revealed TGR5 and EGFR interactions that were blocked by disruption of lipid rafts. DCA stimulated TGR5 redistribution to plasma membrane microdomains, localized by immunogold electron microscopy. Thus, TGR5 does not interact with β-arrestins, desensitize or traffic to endosomes. TGR5 signals from plasma membrane rafts that facilitate EGFR interaction and transactivation. An understanding of the spatiotemporal control of TGR5 signaling provides insights into the actions of BAs and therapeutic TGR5 agonists/antagonists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose of review: Meta-analyses of epidemiological studies of soy consumption and breast cancer risk have demonstrated modest protective effects, usually attributed to isoflavones. Concern has been expressed, however, that the estrogenic activity of isoflavones may have adverse effects on breast cancer recurrence. Recent findings: The review covers epidemiological studies that have investigated the impact of soy consumption in breast cancer patients on recurrence and mortality. There are preliminary data to suggest that soy has differential effects on recurrence in human epidermal growth factor receptor-2 positive and human epidermal growth factor receptor-2 negative tumours. Recent studies on mechanisms of action of soy in breast cancer provide insights into epigenetic effects and the interaction of isoflavones with IGF-1 and with a number of polymorphisms of genes associated with breast cancer risk such as MDM2 and CYP1B1. Summary: Overall, these studies indicate that soy foods consumed at levels comparable to those in Asian populations have no detrimental effects on risk of breast cancer recurrence and in some cases significantly reduce the risk. Importantly, soy does not appear to interfere with tamoxifen or anastrozole therapy. Recent research suggests that women who are at increased risk of breast cancer due to polymorphisms in genes associated with the disease may especially benefit from high soy isoflavone intake.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The E3 ligase c-Cbl ubiquitinates protease-activated receptor 2 (PAR(2)), which is required for post-endocytic sorting of PAR(2) to lysosomes, where degradation arrests signaling. The mechanisms of post-endocytic sorting of ubiquitinated receptors are incompletely understood. Here, we investigated the role of hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), in post-endocytic sorting and signaling of PAR(2). In HEK-PAR(2) cells, PAR(2) activating peptide (PAR(2)-AP) induced PAR(2) trafficking from the cell surface to early endosomes containing endogenous HRS, and then to lysosomes. HRS overexpression or knockdown with small interfering RNA caused formation of enlarged HRS-positive endosomes, where activated PAR(2) and c-Cbl accumulated, and PAR(2) failed to traffic to lysosomes. Overexpression of HRS prevented PAR(2)-AP-induced degradation of PAR(2), as determined by Western blotting. Overexpression of HRS mutant lacking an ubiquitin-binding motif similarly caused retention of PAR(2) in enlarged endosomes. Moreover, HRS overexpression or knockdown caused retention of ubiquitin-resistant PAR(2)Delta14K/R in enlarged HRS-containing endosomes, preventing recycling and resensitization of PAR(2)Delta14K/R. HRS overexpression or knockdown similarly prevented lysosomal trafficking and recycling of calcitonin receptor-like receptor, a non-ubiquitinated receptor that traffics to lysosomes after sustained activation and recycles after transient activation. Thus, HRS plays a critically important role in the post-endocytic sorting of single receptors, PAR(2) and CLR, to both degradative and recycling pathways. This sorting role for HRS is independent of its ubiquitin-interacting motif, and it can regulate trafficking of both ubiquitinated and non-ubiquitinated PAR(2) and non-ubiquitinated CLR. The ultimate sorting decision to degradative or recycling pathways appears to occur downstream from HRS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 70kDa ribosomal protein S6 kinase 1 (S6K1) plays important roles in the regulation of protein synthesis, cell growth and metabolism. S6K1 is activated by the phosphorylation of multiple serine and threonine residues in response to stimulation by a variety of growth factors and cytokines. In addition to phosphorylation, we have recently shown that S6K1 is also targeted by lysine acetylation. Here, using tandem mass spectrometry we have mapped acetylation of S6K1 to lysine 516, a site close to the C-terminus of the kinase that is highly conserved amongst vertebrate S6K1 orthologues. Using acetyl-specific K516 antibodies, we show that acetylation of endogenous S6K1 at this site is potently induced upon growth factor stimulation. Although S6K1 acetylation and phosphorylation are both induced by growth factor stimulation, these events appear to be functionally independent. Indeed, experiments using inhibitors of S6K1 activation and exposure of cells to various stresses indicate that S6K1 acetylation can occur in the absence of phosphorylation and vice versa. We propose that K516 acetylation may serve to modulate important kinase-independent functions of S6K1 in response to growth factor signalling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationships between insulin-like growth factor-I (IGF-I) and the fertility and milk yield of Holstein-Friesian dairy cows were investigated. The concentration of IGF-I in blood was measured weekly from one week before to 12 weeks after calving in 177 multiparous cows and at four times during this period in 142 primiparous cows; the concentration of IGF-I in milk was measured in 50 of the multiparous cows. The plasma concentrations of IGF-I were higher in the primiparous than in the multiparous animals. in the primiparous cows, high concentrations of IGF-I before calving were associated with longer calving to conception intervals. Conversely, in the multiparous cows low concentrations of IGF-I before and after calving were associated with a failure to conceive, despite repeated services. Multiparous cows with IGF-I concentrations of greater than 25 ng/ml in the week after calving were 11 times more likely to conceive to first service than those with lower concentrations. Concentrations of IGF-I greater than 50 ng/ml at first service increased the likelihood of conception five-fold. Cows with higher peak milk yields had lower plasma concentrations of IGF-I and took longer to return to ovarian cyclicity. The negative relationship between milk yield and return to cyclicity was stronger in the multiparous cows (P<0(.)002) than in the primiparous cows (P<0(.)04). The concentrations of IGF-I in milk followed a different pattern and were not associated with the changes in plasma IGF-I or fertility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context: Inherited GH insensitivity (GHI) is usually caused by mutations in the GH receptor (GHR). Patients present with short stature associated with high GH and low IGF-I levels and may have midfacial hypoplasia ( typical Laron syndrome facial features). We previously described four mildly affected GHI patients with an intronic mutation in the GHR gene (A.(1) -> G.(1) substitution in intron 6), resulting in the activation of a pseudoexon (6 Psi) and inclusion of 36 amino acids. Objective: The study aimed to analyze the clinical and genetic characteristics of additional GHI patients with the pseudoexon (6 Psi) mutation. Design/Patients: Auxological, biochemical, genetic, and haplotype data from seven patients with severe short stature and biochemical evidence of GHI were assessed. Main Outcome Measures: We assessed genotype-phenotype relationship. Results: One patient belongs to the same extended family, previously reported. She has normal facial features, and her IGF-I levels are in the low-normal range for age. The six unrelated patients, four of whom have typical Laron syndrome facial features, have heights ranging from -3.3 to -6.0 SD and IGF-I levels that vary from normal to undetectable. We hypothesize that the marked difference in biochemical and clinical phenotypes might be caused by variations in the splicing efficiency of the pseudoexon. Conclusions: Activation of the pseudoexon in the GHR gene can lead to a variety of GHI phenotypes. Therefore, screening for the presence of this mutation should be performed in all GHI patients without mutations in the coding exons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transforming growth factor-β (TGF-β) is synthesised as an inactive precursor protein; this is cleaved to produce the mature peptide and a latency associated protein (LAP), which remains associated with the mature peptide until activation by LAP degradation. Isoform specific antibodies raised against the LAPs for TGF-β2and -β3were used to determine the myocardial levels of LAP (activatable TGF-β) and full length precursor (inactive TGF-β) forms during post-natal development in the rat. TGF-β2was present predominantly as the precursor in 2 day old myocardium. There was an age-dependent shift from precursor protein to LAP between 2 and 28 days. A corresponding increase in the level of mature (activatable) TGF-β2was found. TGF-β3was detected in significant quantities only as LAP. However, a four-fold increase in the expression of TGF-β3LAP was observed between 2 and 28 days. The substantial increases in activatable forms of TGF-β2and -β3that occur in myocardium during the first 28 days of life in the rat support a role for these proteins in post-natal cardiac development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sapintoxin A (SAP A) and 12-deoxyphorbol 13-phenylacetate (DOPP), are two biologically active but non-turnour-promoting phorbol esters that potently bind to and activate the phorbol ester receptor, protein kinase C (PKC). SAP A and DOPP cause a dose-dependent increase in the phosphorylation of an 80 kd (80K) substrate protein for PKC in Swiss 3T3 cells. A similar dose—response effect was seen with sapintoxin D (SAP D), the stage 2 promoting analogue of 12-O-tetradecanoylphorbol-13-acetate and the complete promoter phorbol 12,13-dibutyrate (PDB). The doses resulting in a half maximal phosphorylation of this protein (Ka were 20 nM (SAP A), 45 nM (DOPP), 23 nM (SAP D) and 37 nM (PDB). Both non-promoting and phorbol esters induced a dose-dependent inhibition of [125I]epidermal growth factor (EGF) binding to its receptor in Swiss 3T3 cells. The doses required for 50% inhibition of binding (Ki) were: 8 nM (SAP A), 16 nM (DOPP), 14 nM (SAP D) and 17 nM (PDB). The results clearly demonstrate that induction of phosphorylation of the Pu 80K phosphoprotein and inhibition of [125I]EGF binding in Swiss 3T3 cells following exposure to phorbol esters is independent of the tumour-promoting activity of these compounds. The fact that SAP A, DOPP, SAP D and PDB are mitogenic for a variety of cell types and that exposure to these compounds leads to 80K phosphorylation and inhibition of [125I]EGF binding, suggests that these early biological events may play a role in the mitogenic response induced by these compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The addition of oligofructose as a dietary fiber decreases the serum concentration and the hepatic release of VLDL-triglycerides in rats. Because glucose, insulin, insulin-like growth factor I (IGF-I) and gut peptides [i.e., glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1)]) are factors involved in the metabolic response to nutrients, this paper analyzes their putative role in the hypolipidemic effect of oligofructose. Male Wistar rats were fed a nonpurified diet with or without 10% oligofructose for 30 d. Glucose, insulin, IGF-I and GIP concentrations were measured in the serum of rats after eating. GIP and GLP-1 contents were also assayed in small intestine and cecal extracts, respectively. A glucose tolerance test was performed in food-deprived rats. Serum insulin level was significantly lower in oligofructose-fed rats both after eating and in the glucose tolerance test, whereas glycemia was lower only in the postprandial state. IGF-I serum level did not differ between groups. GIP concentration was significantly higher in the serum of oligofructose-fed rats. The GLP-1 cecal pool was also significantly higher. In this study, we have shown that cecal proliferation induced by oligofructose leads to an increase in GLP-1 concentration. This latter incretin could be involved in the maintenance of glycemia despite a lower insulinemia in the glucose tolerance test in oligofructose-fed rats. We discuss also the role of hormonal changes in the antilipogenic effect of oligofructose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Growth responses to oestrogen can be reproducibly obtained using a selection of oestrogen-receptor-containing human breast cancer cell lines, and molecular mechanisms have been shown to include modulation to growth factor/receptor/signalling pathways, cell-cycle proteins, apoptosis, differentiation, adhesion, motility and migration. Considerable progress has been made in understanding the molecular basis of oestrogen action on gene expression through the ligand-activated transcription factors human oestrogen receptor α (ERα) and ERβ and the resulting effects on global gene expression patterns, but the full profile of coordination of the alterations, which brings about changes in cell growth through genomic and non-genomic mechanisms remain to be fully elucidated. Oestrogen regulation of cell growth involves a complex cross-talk between oestrogen receptor and growth factor signalling pathways such that inhibition of one pathway may lead to stimulation of another, which may explain the remarkable ability of human breast cancer cells to escape from any mode of imposed growth inhibition be it oestrogen deprivation or administration of antioestrogen. Although studies on cell growth have focused to date on the effects of physiological oestrogens, many hundreds of environmental chemicals with oestrogenic properties have now been measured in the human breast. Whether or not the weight of evidence eventually establishes any causal link of complex mixtures of environmental oestrogenic chemicals with breast cancer, the presence of so many oestrogenic chemicals in the breast must influence resulting oestrogenic responses, and the impact of this additional oestrogenic burden needs to be taken into account in future studies on growth regulation of human breast cancer cells.